35 research outputs found

    Double Degeneracy and Jahn-Teller Effects in CMR Perovskites

    Full text link
    Jahn-Teller (JT) electron-phonon coupling effects in the colossal magnetoresistance perovskite compounds La1−xAxMnO3La_{1-x}A_xMnO_3 are investigated. Electron-electron correlations between two degenerate Mn ege_g orbitals are studied in the Gutzwiller approximation. The static JT distortion and antiadiabatic polaron effects are studied in a modified Lang-Firsov approximation. We find that (i) the electron or hole character of the charge carrier depends on the static JT distortion, and (ii) due to the two-component nature of the JT coupling, fluctuations in the JT distortion direction contribute to the charge transport in similar fashion as the local spins.Comment: 11 RevTeX pages. 3 Figures available upon request. submitted to Phys. rev. B (Rapid Communications

    Scaling and Crossover in the Large-N Model for Growth Kinetics

    Full text link
    The dependence of the scaling properties of the structure factor on space dimensionality, range of interaction, initial and final conditions, presence or absence of a conservation law is analysed in the framework of the large-N model for growth kinetics. The variety of asymptotic behaviours is quite rich, including standard scaling, multiscaling and a mixture of the two. The different scaling properties obtained as the parameters are varied are controlled by a structure of fixed points with their domains of attraction. Crossovers arising from the competition between distinct fixed points are explicitely obtained. Temperature fluctuations below the critical temperature are not found to be irrelevant when the order parameter is conserved. The model is solved by integration of the equation of motion for the structure factor and by a renormalization group approach.Comment: 48 pages with 6 figures available upon request, plain LaTe

    Life Detection Technologies for the Next Two Decades

    Get PDF
    Since its inception six decades ago, astrobiology has diversified immensely to encompass several scientific questions including the origin and evolution of Terran life, the organic chemical composition of extraterrestrial objects, and the concept of habitability, among others. The detection of life beyond Earth forms the main goal of astrobiology, and a significant one for space exploration in general. This goal has galvanized and connected with other critical areas of investigation such as the analysis of meteorites and early Earth geological and biological systems, materials gathered by sample-return space missions, laboratory and computer simulations of extraterrestrial and early Earth environmental chemistry, astronomical remote sensing, and in-situ space exploration missions. Lately, scattered efforts are being undertaken towards the R&D of the novel and as-yet-spaceunproven 'life-detection' technologies capable of obtaining unambiguous evidence of extraterrestrial life, even if it is significantly different from Terran life. As the suite of space-proven payloads improves in breadth and sensitivity, this is an apt time to examine the progress and future of life-detection technologies
    corecore